GCSE MARKING SCHEME

SUMMER 2018

PHYSICS - COMPONENT 2
FOUNDATION TIER
C420U20-1

INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCSE PHYSICS

SUMMER 2018 MARK SCHEME

COMPONENT 2 - Applications in Physics

FOUNDATION TIER

GENERAL INSTRUCTIONS

Recording of marks
Examiners must mark in red ink.
One tick must equate to one mark (except for the extended response question).
Question totals should be written in the box at the end of the question.
Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.
Marking rules
All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.
Crossed out responses not replaced should be marked.
Credit will be given for correct and relevant alternative responses which are not recorded in the mark scheme.
Extended response question
A level of response mark scheme is used. Before applying the mark scheme please read through the whole answer from start to finish. Firstly, decide which level descriptor matches best with the candidate's response: remember that you should be considering the overall quality of the response. Then decide which mark to award within the level. Award the higher mark in the level if there is a good match with both the content statements and the communication statement.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao	$=\quad$ correct answer only
ecf	$=\quad$ error carried forward
bod	$=\quad$ benefit of doubt

bod $=$ benefit of doubt

SECTION A

	Question		Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
1	(a)			Size of magnet. Controlled variable Number of steel paper Dependent variable clips picked up. Size of paper clips Size of paper clips Independent variable 3 correct $=2$ marks 1 or 2 correct $=1$ mark 0 correct $=0$ mark	2			2		2
	(b)		Big magnet picks up fewer paper clips [than the small magnet] (1) It must be weaker [than the small magnet] so prediction wrong (1) Accept converse.			2	2		2	
	(c)		Any (1) from: - Use more different sized magnets - Measure the 'size' of the magnets - Use smaller identical paper clips - Repeat experiment [to get a mean value for paper clips]			1	1		1	
			Question 1 total	2	0	3	5	0	5	

Question			Marking details	Marks available						
			AO1	AO2	AO3	Total	Maths	Prac		
2	(a)	(i)		Radioactive decay is random	1			1		1
		(ii)	$\begin{aligned} & \frac{74+76+72+75+74+73}{6}=\frac{444}{6}(1 \mathrm{sum} \rightarrow 444) \\ & =74[\mathrm{cpm}](1) \end{aligned}$	1	1		2	2	2	
		(iii)	74 ecf $-23=51$ [cpm]		1		1		1	
	(b)		Only background count recorded [when wrapped in Al] (1) Both alpha and beta are absorbed by aluminium (1) The source could emit beta and/or alpha so disagree (1)			3	3		3	
			Question 2 total	2	2	3	7	2	7	

Question			Marking details	Marks available						
			AO1	AO2	AO3	Total	Maths	Prac		
3	(a)			Heat and light (either order)	1			1		1
	(b)		Voltmeter	1			1		1	
	(c)	(i)	225 [J]	1			1	1	1	
		(ii)	$\begin{aligned} & \text { Substitution: } 225 \text { ecf }=\text { power } \times 8.7 \text { (1) } \\ & \text { Power }=25.9[\mathrm{~W}](1) \end{aligned}$	1	1		2	2	2	
		(iii)	$0.08 \times 25=2[W](1)$ Lamp not rejected as power rating in the range 27 W to 23 W (1) (ecf (c)(ii)) Alternative;- $\frac{(25.9-25)}{25} \times 100=3.6 \%(1)$ Lamp not rejected as 3.6% is less than 8% (1) $(\operatorname{ecf}(\mathrm{c})(\mathrm{ii}))$			2	2	1	2	
			Question 3 total	4	1	2	7	4	7	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
4	(a)			$45\left[\mathrm{~cm}^{3}\right]$	1			1		1
	(b)	(i)	$50-45$ ecf $=5\left[\mathrm{~cm}^{3}\right]$		1		1		1	
		(ii)	$\begin{aligned} & \text { Substitution: } \frac{15}{5 \mathrm{ecf}}(1) \\ & \text { Volume }=3\left[\mathrm{~g} / \mathrm{cm}^{3}\right](1) \end{aligned}$	1	1		2	2	2	
	(c)	(i)	D		1		1		1	
		(ii)	A and E		1		1		1	
	(d)		Same answer as to (b) (ii)	1			1		1	
			Question 4 total	3	4	0	7	2	7	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
5	(a)			Do not touch lamp / switch off when not in use / leave to cool before packing away	1			1		1
	(b)		Indicative content: Place glass block on the A4 paper and draw round it. Use the protractor to measure and mark the position of the normal and the incident rays at, e.g. $20^{\circ}, 40^{\circ}, 60^{\circ}, 80^{\circ}$. Shine an incident ray at, e.g. 20° to the normal into the glass block. Carefully mark with a pencil the path of the ray as it leaves the block. Switch off ray box and remove the glass block. Using a ruler draw a straight line between the entry and exit points to show the ray path inside the block. Measure and record the angle of refraction. Repeat for the incident rays at $40^{\circ}, 60^{\circ}$ and 80°. Record data in a table. The experiment could be repeated and mean values obtained for each angle of incidence 5-6 marks Detailed and clear instructions that could be followed successfully. This may be enhanced with a correctly labelled diagram. A range and intervals for incident angle must be stated. All equipment used correctly. Repeat readings mentioned. There is a sustained line of reasoning which is coherent, relevant, substantiated and logically structured. The information included in the response is relevant to the argument. 3-4 marks Description of experiment that could be followed but some changes would be needed. Some incident angles referred to and most of the equipment used correctly. Repeats not mentioned. There is a line of reasoning which is partially coherent, largely relevant, supported by some evidence and with some structure. Mainly relevant information is included in the response but there may be some minor errors or the inclusion of some information not relevant to the argument.	6			6		6	

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
			1-2 marks The instructions would require some significant additions or changes for the investigation to be carried out. No mention of possible angles. There is a basic line of reasoning which is not coherent, supported by limited evidence and with very little structure. There may be significant errors or the inclusion of information not relevant to the argument. 0 marks No attempt made or no response worthy of credit.						
(c)	(i)	5.0 (± 0.1) [cm$]$	1			1		1	
	(ii)	3 converging rays, focus closer to lens than thin lens	1			1		1	
	(iii)	2 outside diverging rays, middle ray straight through [ignore virtual rays to left of lens]	1			1		1	
		Question 5 total	10	0	0	10	0	10	

SECTION B

COMPONENT 2 - Applications in Physics
FOUNDATION TIER
SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

	Question	A01	AO2	AO3	TOTAL MARK	MATHS	PRAC
Section A	1	2	0	3	5	0	5
	2	2	2	3	7	2	7
	3	4	1	2	7	4	7
	4	3	4	0	7	2	7
	5	10	0	0	10	0	10
	6	3	6	0	9	4	9
Section B	7	0	11	4	15	6	0
	TOTAL	24	24	12	60	18	45

